Indian Statistical Institute Second Semester Examination 2005-2006 M.Math I Year Fourier Analysis

Time: 3 hrs

Date: 03-05-2006

Maximum Marks: 60

Answer as many questions as you can. You may use your class- room notes.

You may assume the following result stated in class: If S is a tempered distribution such that supp $\hat{S} = \{0\}$, then S is a polynomial.

- 1. Let f be a 2π -periodic function whose Fourier coefficients $\hat{f}(n)$ are given by $\hat{f}(n) = e^{-\alpha[\log |n|]^2}$, $n \neq 0$, where $\alpha > 0$ is a constant.
 - a) Is f square-integrable on $[-\pi, \pi]$?
 - b) Is f a C^{∞} -function?

Justify your answers.

- 2. Let E be a set of finite positive measure in \mathbb{R} . Prove that $\hat{\chi}_E$ cannot be integrable on \mathbb{R} .
- 3. Let f be a continuous function on the real line with $|f(x)| \le e^{|x|} e^{-|x|^3}$, $x \in \mathbb{R}$. Prove that
 - a) $f \in L^1(\mathbb{R})$
 - b) If $|\hat{f}(\lambda)| \leq B e^{-\beta\lambda^2}$ for some $B, \beta > 0$, prove that $f \equiv 0$.
- 4. Let $f(x) = e^{-\frac{1}{x^2}}e^{-|x|}, \ x \neq 0 \ \& \ f(0) = \lim_{x \to 0} f(x)$. Prove that $\hat{f} \in \mathcal{S}(I\!\!R)$.
- 5. Let $f(x)=xe^{-x^2}$. If g is a function which is in $L^p\cap L^\infty$ for some $1\leq p<\infty$ and $f*g\equiv 0$, show that g=0 a.e.
- 6. Let $E \subseteq \mathbb{R}^3$ be the set $\{x \in \mathbb{R}^3 : ||x|| \le 1\}$. Calculate $\hat{\chi}_E$. Hint: $\hat{\chi}_E$ is a radial function. So calculate it at (0,0,r) using polar coordinates.
- 7. Let $f(x) = \chi_{[-\infty,1]} e^{x^2}$. What is T'_f ?